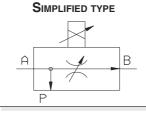
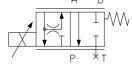

"D15P" PROPORT. SOLENOIDS	CH. VIII PAGE 15
REM.S.RA	Ch. IX page 4
SE.3.AN.21.00	CH. IX PAGE 11
BC.06.XQP3	Ch. VII page 13

XQP.3... OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE indynamica **COMPENSATED FLOW REGULATORS**

The open loop proportional flow regulator is 2 and 3 way compensated with priority function. It is designed to regulate flow in proportion to an applied electrical current (REM or SE3AN power amplifier). Flow regulation is load independent - B port. Load compensation is achieved by a spool compensator which holds the pressure drop constant across the proportional spool.


Valves are available in the following versions (see hydraulic symbol):


- 2 way pressure compensated 3 way pressure compensated with priority func-
- 3 way pressure compensated with priority and venting function.

• In order to obtain the 2 way pressure compensated version the cavities P and T have be closed on the subplate.

HYDRAULIC SYMBOLS

· In order to obtain the 3 way pressure compensated version the cavity T have be closed on the subplate.

ORDERING CODE

XQP

Open loop 2/3 way proportional compensated flow regulator

3

CETOP 3/NG6

C

2/3 way compensation with priority function

3

3 way version (standard) For to obtain 2-way version the P line must be closed on the subplate

Nominal flow rates

F = 6 l/min

G = 12 I/min

H = 22 l/min

I = 32 I/min

L = 40 l/min

S = without decompression

D = with decompression

Max. current to solenoid

E = 2.35 A

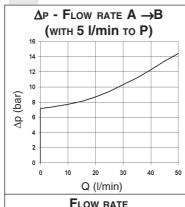
F = 1.76 A

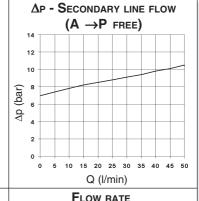
G = 0.88 A

**

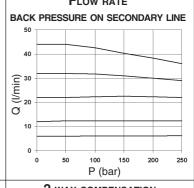
2

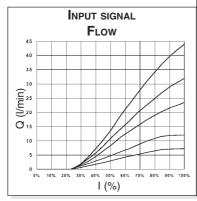
00 = No variant

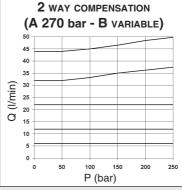

P1 = Rotary emergency

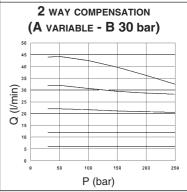

P5 = Rotary emergency 180°

V1 = Viton


Serial No.


DIAGRAMS





BACK PRESSURE ON PRIORITY LINE 45 40 35 (I/min) 30 25 20 Ø 15 10 100 150 P (bar)

The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

aran[°]

XQP.3... OPEN LOOP 2/3 WAY PROPORTIONAL PRESSURE COMPENSATED FLOW REGULATORS

from class 7 to 9 in accordance

OPERATING SPECIFICATIONS

Max. contamination level

Max. operat. pressure ports A/B /P see note (*) With T port blocked on subplate 250 bar 6 / 12 / 22 / 32 / 40 l/min Regulated flow rate Decompression drain flow max 0,7 l/min Continuous 100% ED Relative duty cycle Type of protection (in relation to the connector used) IP 65 Flow rate gain See diagram "Input signal flow" Fluid viscosity $10 \div 500 \text{ mm}^2/\text{s}$ Fluid temperature -20°C ÷ 75°C -20°C ÷ 70°C Ambient temperature

with NAS 1638 with filter $\beta_{10} \!\! \geq \!\! 75$ Weight 1,7 Kg

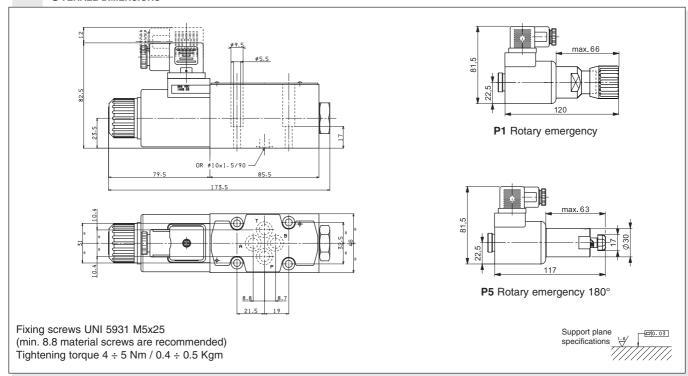
Max. current	2.33A	1.76 A	0.88 A
Solenoid coil resistance at 25°C (77°F)	2.25 Ohm	4.0 Ohm	16.0 Ohm
Hysteresis with ∆p 7 bar	≤5 %	<5%	<8%
Response to step $\Delta p = 7$ bar			
0 ÷ 100%	32 ms	40 ms	85 ms
100% ÷ 0	33 ms	33 ms	33 ms
Frequency response -3db (Input signal 50% ±	25% Vmax.)		
	22Hz	22Hz	12Hz

(*) Pressure dynamic allowed for 2 millions of cycles

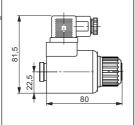
Operating specifications are valid for fluids with 46 mm $^{\circ}$ /s viscosity at 40 $^{\circ}$ C, using specified ARON electronic control units.

Performance data are carried out using the specified Aron power amplifier SE.3.AN...

AMPLIFIER UNIT AND CONTROL


REM.S.RA.*.*...

Electronic card for control single proportional solenoid valve


SE.3.AN.21.00...

Electronic card format EUROCARD for control single proportional solenoid valve

OVERALL DIMENSIONS

"D15P" Proportional solenoids

Type of protection (in relation to connector used)	IP 66
Duty cycle Insulation class	100% ED H
Weight (coil)	0,354 Kg
Weight (solenoid)	0,608 Kg
	ETD15P - 01/2002/e

XQ.3			
"D15P" PROPORT. SOLENOIDS	CH. VIII PAGE 13		
REM.S.RA	Ch. IX page 4		
SE.3.AN21.00	Ch. IX page 11		
BC.3.08 / BC.3.09			
BC.06.XQ3	CH. VII PAGE 13		

ORDERING CODE

XQ

Proportional flow control valve

3

No. of way

C

Pressure compensation

3

CETOP 3/NG6

Flow rates

F = 5 l/min**G** = 10 l/min

H = 16 l/min

I = 28 I/min

M = With manual pressure limiter S = Without manual pressure limiter

Setting ranges $1 = 8 \div 50 \text{ bar}$

 $2 = 25 \div 170 \text{ bar}$

 $3 = 50 \div 315 \text{ bar}$

Omit for XQ.3.C.*.S version

E = With rotary emergency (type **P1**) S = Without rotary emergency

*

Voltage

E = 9VDC (2,35 A)

F = 12VDC (1.76 A)

G = 24VDC (0.88 A)

00 = No variant

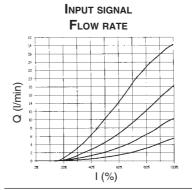
V1 = Viton

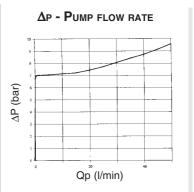
P5 = Rotary emergency180°

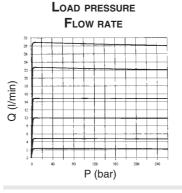
2

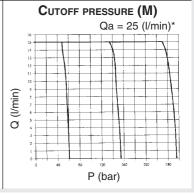
Serial No.

'indynamica XQ.3... Proportional flow control VALVES PRESSURE COMPENSATED CETOP 3


This is a proportional valve where both the flow rate and pressure control flow functions have been integrated according to the 3 way regulation concept.


The interface UNI ISO 4401 - 03 - 02 - 0 - 94 standard (ex CETOP R 35 H 4.2-4-03) allows for direct mounting on modular block or multiple sub-bases, which makes possible many advantageous and extremely compact application solution as a consequence of their simplicity of installation.


The 3 way type pressure compensator, inserted into the valve, holds the pressure drop across the flow rate proportional regulator constant (approx. 8 bar) independently from the controlled load variations, whereby ensuring proportional between the set flow rate and the electrical


Additionally, the system maximum safety pressure can be regulated through a manual command. This valve, if mounted on the feed line to the manifold block, can be used to control several circuits which are not operating at the same time.

DIAGRAMS

The fluid used is a mineral based oil with a viscosity of 46 mm²/s at 40°C. The tests have been carried out at with a fluid of a 40°C.

(*) Tested with 25 l/min supply

TABLE 1 - FLOW / PRESSURE SPECIFICATIONS

Model Hydraulic symbol	Max flow rate (I/min)	Max flow in P (I/min)	Max limiter pressure (bar)	Max load pressure (bar)	Δp Control (bar)
XQ.3.C.3.*.M	5 10 16 28	40	8÷50 25÷170 50÷315	250	8
XQ.3.C.3.*.S	5 10 16 28	40		250	8

XQ.3... PROPORTIONAL FLOW CONTROL VALVES PRESSURE COMPENSATED

Max. operat. pressure ports A/B / With P port blocked on subplate 315 bar Max. operating pressure ports T - for dynamic pressure see note (*) 250 bar Regulated flow rate See diagram page before Relative duty cycle Continuous 100% ED Type of protection IEC 144 class IP 65 See diagrams Flow rate gain Hysteresis with connection P/A/B/T $\Delta p = 5$ bar (P/A) 4% of max. flow rate Fluid viscosity 10 ÷ 500 mm²/s -20°C ÷ 75°C Fluid temperature Max. contamination level class 8 in accordance with NAS 1638 with filter $B_{10} \ge 75$ Weight version XQ.3.C.*.M... Weight version XQ.3.C.*.S... 2,89 Kg 2,39 Kg

 Weight version XQ.3.C.*.S...
 2,39 Kg

 Type of voltage
 9V
 12V
 24V

 Max. current
 2.35A
 1.76 A
 0.88 A

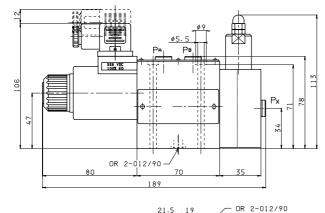
 Solenoid coil resistance at 25°C (77°F)
 2.25 Ohm
 4.0 Ohm
 16.0 Ohm

(*) Pressure dynamic allowed for 2 millions of cycles.

ELECTRONIC CONTROL UNIT

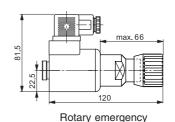
REM.S.RA.*.*.

Card type control for single solenoid


SE.3.AN.21.00...

EUROCARD type control for single solenoid

• Operating specifications are valid for fluid with 46 mm²/s viscosity at 40°C, using the specified ARON electronic control units

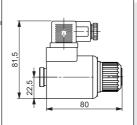

TYPICAL INSTALLATION | Columbia | Columbia

OVERALL DIMENSIONS

Fixing screws UNI 5931 M5x80 (min. 8.8 material screws are recommended) Tightening torque $~4\div5~$ Nm /~ 0.4 \div 0.5 Kgm

max. 63

version XQ.3.C.*.*.*.E


P5 Rotary emergency 180°

Support plane specification

gran

"D15P" Proportional solenoids

Type of protection (in relation to connector used)	IP 66
Duty cycle	100% ED
Insulation class	Н
Weight (coil)	0,354 Kg
Weight (solenoid)	0,608 Kg
	FTN15P _ N1/2002/o